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ABOTHACT

The flutter of an infinitely long nlate in a high supersonic
airstream is examined theoretically usiny Von FZarman's nonlinear
nlate deflection equation and piston theory aerodynamics. By numeri-
cal methods the flutter is found to take the form of a traveling wave.
To a close anproximation the flutter motion can be described analytically.
The case for flutter of loaded panels is also explored and analytic
formulae developed. Solution in terms of more than one traveling wave

is found to agree closely with the single wave behavior,
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S0V EMCLATURE

th s
17 mode amplitudes

non-dimensional amplitudes Ai/h and Bi/h

speed of sound

plate width

wave speed

plate stiffness Eh3/12(1—v2)
modulus of elasticity

plate tliickness

wavelength in x-direction
ith mode wavelength

mach number

in-plane stresses, x and y directions

applied in-nlane stresses

perturbation nressure
2

dynamic nressure pl/2

(a), 2,
7T ()
MX b /:..-

2

1$@y 2y

y

time
air velocity
panel deflection in z-direction
¥/h at a point
limit cycle modal amnlitudes

lengthwise coordinate (stream wise)



cross stream coordinate

normal coordinate

mode nunmbers

21Tx/9,i

2qb3/WD

pb/pmhﬁ mass ratio

Poisson'’s Ratio (v= .3 was used)
air density

rlate density

non-dimensional time = (

plate stress function

non-dimensional frequency of flutter

4 4 4

37() ,20°() , 27C)
& 2. 2 43

Ix ax dy Ay



I, IMNIRODUCTIO!

Considered herein is the resnonse of an infinitely long pnlate
exposed to a length wise airflow and suhjected to an initial distur-
bance. Jiotivation for the analysis came from Dowell's [4] discovery
that the flutter of plates with high length to width ratios was dowinated
by modes too high to be conveniently examined by finite nlate apnroaches.,
The analysis presented here would he valid¢ for nlates with length to
width ratios above, say, ten if the effects of the ends hecome negligible
as the nlate length increases.

All analysis and terminology are derived from Dowell [4], whose
major sources were Bolotin [1] and Librescu [6]. Iusundji [5] has inves-

tigated the linear case,



IT. PROBLE!! GLOVETYY

Consider a thin plate, ninned at hoth side edges and very long,
subjected to a lengthwise air flow over the ton surface (Fir. 1).
Linear plate deflection theory nredicts that, above a certain air flow
velocity, any disturbance of the plate will become an exponentially
growing oscillation. Finite nlate analysis using Von iarman's nonlinear
deflection equations shows that disturbances reach a steady state and
the plate oscillates (flutters) indefinitely. Linecar treatment of the
aerodynamic forces is satisfactory for ilach numbers tetween 1.5 and 5.
Finite plate analysis usin= Von Harman's nlate deflection equations and
piston theory (linear) aerodynamics has nroduced satisfactory agreement

with expnerimental data (Dowell [2]).



ITII. LINEAR ANALYSIS

Linear analysis of this problem has been carried out by Dugundji
{5]. Linear analysis predicts the flutter boundary, but describes
all disturbances as decaying or growing exponentially. A review of
the linear analysis follous.

Consider a simply sumported infinitely long plate of width b and
thickness h (Fig. 1). The plate is initially at rest, flat, and unstretched.
An ailrstream passes over the upper surface. If the plate is given an
initial disturbance, three linear effects are important in describing the
motion. They are: inertial forces, aerodynamic forces, and the nlate's
resistance to bending. The deflection is described in terms of a travel-

ling wave of the general form

.
W(x, y, t) = z z cos L [A (t) cos —Ef-+ B_(t) sin ZEE]
n n

Only the first spanwise mode (m = 1) need he retained. Tor the linear
case none of the modes are counled, therefore each wavelength in may be

examined separately. Thus the wave form becomes

W = cos —l-[A cos __Z.+ B sin g£z1 (1)

The equation governing the motion is

2
_a_ll = 1 L}\'\Y - -
ph —% = DV - (p-p,) (2)

Using piston theory aerodynamics the aerodynamic forces are [2]
3)

Solution is by Galerkin's method. The deflection W is substituted

from (1) into equation (2). The resulting equation is multiplied by



each of the mode shapes, cos (ny/b) cos (2mx/1) and cos (my/b) sin (27x/1).
The two equations are then integrated over the panel width and n wave-

lengths producing the non-dimensionalized results below:

32a Ja 2
1 b 1 4,, b~
5 = 27 ) Abl - /KG"—E? -7 (4 7 + l)al

3T 2

2

37 b da 2
1_,. b - R L
5= 21 o Aay Au =2 - T (4 =5+ Dby (4)

9t 2

HWote (4) is independent of n.
If we assume ay = aoein and bl = bqeiwt, then the condition for

neutral stability is that w he a pure real number. This condition
predicts a flutter boundary of

2 2 2 ’
b 2
¢ 25+ 1 (5)
L
Thus the point at which a plate first flutters 1s expressed in terms of
a relationship between the aerodynamic loading X and the mass ratio u.
Flutter occurs at the lowest value of A for a wavelength of twice the

panel width, as can be seen by miniwmizing equation (5) with resnect to

2/b and obtaining the critical values.

2
Acr = 4

[
N

(/1)

cr



Iv. NONLINEAR ANMALYSIS

The nonlinear equation takes into account the stresses in the
plate due to its being stretched like a membrane. Ifembrane stresses
in plates are significant for deflections on the order of one plate
thickness. The nonlinear equation is [41].

BZW 4 32® BZW 82¢ BZW 82© BZW
pmh 2 - v - (p—pw) + 2 2 + 2 2" 2 9xdy 9xdy
- ot 9x  dy 3x 9%

(6)

Where ¢ 1s the stress potential function for the plate and obtained from

V4® 32W 2 SZW 32W (7)
T~ Gy - T2 2)
Ix 3y
If ¥ from equation (1) ic substituted into (7)
V4¢ 21r4 2 .2 4 4nx 2. 2 21
— [(A"-B”) cos X 4 9AB sin =X 4 (AT+37) cos “L 1 (&
Ih 22b2 2 £ b

Assuming that the particular solution @n is of the form

= Amx hmx o - 21y
¢p = T cos 2 4+ Q sin e + R cos 2

then substituting @p into equation 7 and equating coefficients

2
Eh 2 2 .2
T= - 128 2 (A7-P7)

2
N = - -}E‘_ b-—-—-
X )

&% + 3% (o)

We assume for the homogeneous solution ¢, the simplest form that will

h

maintain any value of stress



I SN A 10
o i +H 5+ nyxy (10)

By the definition of a stress function the stresses in the plate are

. 2% g = 2%
t had 'y -
x 8y2 aXZ

The strains in the plate then are

du_ L o _ oy Ll 2
3x Eh (Jx Y“y) 2 (Bx)
du_ 1 ey 122 (11
dy ~ Eh (dy YJX) 2 (Bx) )

As boundary conditions we ask that there be no net inplane stretching

over the width and n wavelengths:

b n% b nt
fz fz 2 gxdy = 0 f2 2 2 axdy = © (12)
b _n ¥ Cbo_me™ |
2 2 2 "2
Applying these conditions
2 2
— i E
o= (a2 +pdy - Eox T,
v 1-v2 @2
2 2 ih 2 2
o (a z T Ym
M (1% + 39 > ( 5 + 2) (13

Exy is assumed to be zero, implying no resistance to in-plane ghears. MNote
that these results are indenendent of n.
Equation (6) can now be expressed in terms of W. Applying Galerkin's
method in the same manner as in the linear case, the equations become

(in non-dimensional form):



aza da 2
1 b .. _ "1 4, b° 2 - 2 .2
) 3 2% ) )\01 Au e m (4 5 + 1) al + L4al(al + 01)
T 2
2%h 3b 2
1 b 1 &, b 2 2 2
5 = 2m o, Aay - e v MU 1%, + Eébl(al + bl)
°T £
& w2 4 4
where B o=-1217@ 2+ vi+ b Cndfa-d) o3 ol aw
4 4 2 0 ol 4

The deflection V' = W(x, ¥, T: A, U, 2/b). dJdumerical solutions were

obtained by integration of equations (14) on a digital computer.



V. SOLUTIONS AND RESULTS

Approximate Analytical Solution

Numerical integration of equation (14) produces a traveling wave
form (Fig. 2). If the deflection is assumed to be a traveling wave,
the limit cycle amplitude and frequency can be predicted analytically.

e assume a time history of the form a cos wt and bl = b, sin wr.

17 %
Substituting into (i4) and again applying Galerkin's method by multiply-
ing the equations by cos wt and sin wrt and integrating over a period,

we obtain four equations in tiiree unknowns w, ays and bg. lovrever two
palrs of equations are symmetrical in a, and bO. If a, = bO = W, we

get twvo equations in w, and w. These reduce to

0
w = 2m BVE (15a)
2w
2 4 2,2 2
. = (=T (4 E /27 + 1) )1/2 (15b)
i l.dl“
Using (12), W, may be yritten 2 2 1/2
2b° ) 4,, b
G S = - (b + 1)
2y S .2
_ L L (16)
Vg = = .

Humerical Solution

Equations (14) were step wise inteprated under IB{ 363 Fortran IV.
One hundred steps per cycle of oscillation penerally gave satisfactory
accuracy. The limit cycle was usually reached in under one minute of
computation. Longer times were necessary for low values of u or A/u.

The analytic solution predicted the limit cycles obtained numerically

well within the accuracy of the numerical data. Figure 3 shows the peak



of the oscillations approaching the theoretical asymptote with time.

For practical applications u's between .1 and .01 are of interest.

While numerical results for u = .1 and u = 1. corresponded exactly,
numerical results for p = ,01 and u = .001 fell conmsistantly 5% and 157
short of the analytically predicted amplitudes. Thus for mass ratios
below .01, the analytical formulae do not produce good results. Ilovever,
computation times for p = .J01 are almost impossibly long so the analy-

tical prediction may still be the most desirable method.

Discussion of Results

The results of the above analysis are presented in a series of graphs,

The dependence of the limit cycle deflection w,. on the chosen /b

0
is presented in figure 4. ‘ilotice the symmetry atout &/b = 2. &/b = 2

is the critical point as was shown previously, but the maxima are not
sharp. Figure 5 illustrates the denendences of the limit cycle amplitude
upon a linear relationship between A and p(A/u = constant). An 2/b of

two was used for all points, as suggested by figure 4.

The denendence of the limit cycle amplitude on A/u is also expressed
in fipure 6. The solid curve coincides with the curve obtained analyti-
cally. The dashed curve is the numerical result for a u of .01 and
illustrates that the analytical approximation just begins to break down
for this small py. Figure 7 has been included to illustrate the depen-
dence of W, on A for a finite plate. The limit cycle is relatively
independent of u: the dependence is on A and not on A/p,as for an infinite

plate. The present results suggest that for larpger length to width ratio

plates p will become as immortant as A,
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Comparison with Finite Length Plate

It can be immediately seen from equation: (16) that deflections
of infinitely long plates depend on the ratio A/u and not on A or
u independently. UHNotice that the aerodynamic dependence is on velocity
(Uz) rather than on dynamic pressure q. This functional relationship
is in direct contrast with results obtained by Dowell [4] for finite
plates. Limit cycle amplitudes for finite plates depend strongly on A
(corresponding to q) and only weakly on u., However there is some indica-
tion that M becomes more important as the length to width ratio increases.
For infinitely long nlates, an &/b of exactly two produces the greatest
deflection for a given A/u. This result can be proven by differentiating
equation (16) with respect to &/b. /b = 2 is the critical point. This
result suggests that in the limiting case of long finite plates the

flutter amplitude will no longer depend on the plate length,
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VI. DISCUSSION OF AERODYNAIICS

The assumptions made to ijustify piston theory aerodynamics were
reconsidered in light of the above results. Dowell [7] had previously
compared piston theory and higher order aerodynamics for the linear
study of infinitely long plates. Linear theory was valid for high
supersonic mach numbers,

In most uses, piston theory is valid vwhenever MZ >> 1. However,
for a traveling wave the relevant vnarameter is the relative mach number
i = (U - c)/a, where c 1s the wave speed. Thus for traveling waves the
condition is Mz(l - c/U)2 >> 1. Dowell's work revealed that at the
flutter boundary 1 - c¢/U = 0, Nevertheless he discovered that for large
1 the piston theory was still an acceptable approximation of the more
exact results.

In our case numerical data and analytical results both predicted
that 1 ~ ¢/U = 0 throughout the nonlinear flutter range. (See figure 8:
the analytical and numerical approaches agreed with the same degree of
accuracy in predicting frequencles as they did in predicting deflection.)
The result can be demonstrated analytically:

By definition

L _ e
2

vhere Qis the dimensional frequency. Our analytical solution for the

flutter frequency gave

We = 2m % J?g

where
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2.4
pth b 1/2

w = ( 5 )

Combining the above equations, one may show that

C
f
1 - T = 0

Thus the piston theory is neither more nor less applicable for nonlinear
flutter regime that it was on the flutter boundary.

While this result suggests that the present analysis is accurate
only for very high supersonic mach numbers, the results may have
significance beyond their theoretically limited range. The motivation
gor infinite plate analysis 1s the desire for comparison with long
finite plate approaches. For comparison both cases should employ the
same aerodynamic theory. Piston theory aerodynamics is valid down to
mach numbers of two for finite plates, therefore such aerodynamics are

of interest down to mach numbers near two for infinite plates.
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VII. Ili-PLAXE LOADIIG

Consideration was also given to a plate with initial in-plane
loading'both from the ends at infinity and from the sides; Timoshenko
[6] has developed the static buckling modes and loads for such a simply
supported plate. Compression from the ends at infinity results in a
buckling into lengthwise waves of wavelength 2b and a half-vave in the
spanvise direction. Compression from the sides results in buckling
into a half-wave in the spanwise direction with no lengthwise heijight
variations (infinite wavelength 1).

First consideration was given to compressions from the ends at

infinity. The compression enters into ¢ of equation (6) as an additive

stress ﬂ( )
2 _
¢ =T cos sin X 4 p cos -—3'—+w Y—+nx+ (a)—’-
2 x 2 2 2
Solution proceeds exactly as before and a term Rx = ; a),2 b~ /D appears
in equations (14), viz.
2
9 a da 2 2
1 b 2,, b 2 2 2 2 b
5 = VA 2 Abl - Van e 4 5 + 1)° + E431(31 + bl)—Rxa14n 5
T L L
2
b 2 2
1 b l 2 b
= -— - — '—" - L -~
5 27 ) Aal 5 v (4 5 + l) + E4bl(a l) #bl T3
9T ') L
17)
If we assume a; = a, cos ur and bl = bO sin wt as before, we obtain
an analytic solution for Ve Equation (15a)w is not altered by the
addition of in-plane stresses. LA becomes
2 2 2
= 2 b A 2 L 2 2 b_ 0 1/2
Wy = [ C4n 7 m {4 + 1)° - Rxﬂ 4 2)/u4] as8)

<

A
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Thus the effect of I is very similar to that of A/u. Tumerical
solutions of equaticns (17) once again bear out the validity of

the assumed time dependence and reveal a series of shifted Wy VS VAT
curves for various Rx's (see figure ?2). Once again there is some
deviation at lower p's. There is no change in the behavior near the
Euler buckling load RX = ~4n2. However as ) approaches zero, the fre-
quency of the oscillation slows and the deflections approach the static
position. The oscillation continues to “pop through” from one static
position to the mirror image position. There is no detectable tendency

to superimpose small oscillations on a single static equilibrium position.

Both the unloaded flutter phenomenon and the Euler buckling phenom-—
enon have their maxima at /b = 2. By differentiation of equation (15)
we can prove that the combined case also has a critical 2/b of 2.

The case is not quite so simple for compression from the sides. If
sideloads are applied to an infinitelv long plate, buckling talkes the
form of a curved surface with no variation of deflection in the lengthwise
direction. This means a deflection with an infinite &/b. But for the

unstressed case the 2/b for maximum deflection at flutter is 2. Analysis

analogous to the procedure outlined for Hia) produces a deflection
2522 4, b 2., 1/2
wy = [(4n” S = - 7n(4=5+1) ~-R 7)/E ] (19)
0 22 u 9’2 x 4

Solving for the critical point
X R_L/n 2+ (R2L2 e 20ivr L2 116+ (r_ n241) 16v 24 Ly fn2) 12 <172
& = X X X X 1
b critical 16v + JL

J=-%—}= L=3- v (20)
“u
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The plot of deflection vs &/b for constant R_ and A/u (Figure 10)

X
demonstrates the nature of this critical value. The maxima is less
definite than the maximas at 2/b = 2 were (Fig. 4). Indeed any /b
greater than the critical &/b produces deflections very near the
maximum value,

The critical value of &/b is greater than two for R negative (com-
pression) and less than two for Ry positive (see Figure 11). Note that
equation (20) applies only up to the flutter boundary. When Ry is so
negative that there is no flutter but only buckling, %/b is infinite.

The deflection LA is plotted against A/u in Figure 12, The /b for

maximum flutter was used to obtain LA at each point. Unlike the unstressed

case (Figures 5 and 6) or the end-loaded case (Fig. 9) the critical values

of /b are not a constant.



VIII. G:ULTI-MODE SOLUTION

For nonlinear oscillations, disturbances need not take the form
of a single wavelength, In order to examine this possibility a deflec-

tion composed of several wavelengths

- v 21x 2mx
W = cos 5 [g An(t) cos zn + Bn(t) sin zn

can be substituted in place of the single mode deflection shape employed
above. Performing the operations as before we find that each mode is
generally coupled with all other modes. TFor example, the mode associated
with 2/b = 2 interacts with the wave associated with 2/b = 7.15! It
should be noted that the limits of integration n2/2 must go to infinity
so that there will be no residual terms due to conditions at the ends

of the plate.

Analysis in terms of more than one mode can proceed more simply
however on the assumption that only the first (2/b = 2) mode is initially
disturbed. VUhile this is admittedly a special case, it is relevant to
finite plates where the spectrum of possible wavelengths is limited to
submultiples of the plate length. Only terms like

nf /2
A/A A cos 0.X cOsS O,X cOS @, X COS o X dx
N

“n2/2 175 ®r i 3 }
contribute to the mth mode equation of motion. Examination of this
cosine product reveals that the integral is zero unless a can be obtained

We shall consider the case

=*

from a sum or difference of o, aj, and o
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where only the mode associated with an o = oy is excited initially.
Since only Al is non-zero, only the term with i = j = k = 1 is non-zero.
Thus the only other mode excited is a = o + aj + o = 3al. By sums

and differences these two modes interact to excite the modes associated
with Sal, 7al, 9al, and so on. This means that if one wavelength is
excited only a discrete spectrum of shorter wavelengths are of interest,
i.e., those which are odd integer multiples of the basic wave number.

The details of the analysis are given in the appendix.

Discussion of Yesults

The multi-mode solution was undertaken for two reasons. First as
a check on the accuracy of a single mode solution. And second, in order
to indicate which modes would be important to include in a finite plate
analysis.

The equations of motion for coupled modes (see appendix for deriva-
tion) were integrated on a digital computer. In order to bring computation
times within the available time limits (on the order of 5 minutes per
run), several sacrifices in accuracy were made. Rather than use one
hundred steps per cycle, about seventy points per cycle were computed
(based on shortest period mode). Furthermore, limit cycles were not
approached so closely as had been the case for the single mode solution.

ilumerical runs were made by exciting the first (/b = 2) mode and
examining the 1limit cycle composed of the first mode and one or two
subharmonics (see figure 13).

Limit cycles were within 107 of the limit cycles achieved for the

single mode case. This is within the error of the multi-mode data. We



~18-

can thus conclude that the single mode solution is fairly well con-
verged for moderate Afu.

liodes in the stable region have a very small effect on the oscil-
lations. The amplitude of the stable mode tended to be no more than
2% of the amplitude of the unstable mode. The addition of a third stable
mode to two unstable modes produced no detectable change in the motion
at all.

Higher order modes in the unstable region had a detectable but
distinctly secondary effect. For a A/u of 200, the addition of a second
(/b = .667) mode reduced the limit cycle amplitude slightly. The second
mode's amplitude was never above 3% of the limit cycle amnlitude.

The choice of &/b = 2 is justified only for checking the convergence
of a single mode infinitely long plate solution. In order to explore
behavior similar to the action of long finite plates, an unstable &/b of
six was used as the first mode (see Figure 13). It was found that the
second (/b = 2) mode still dominated the phenomena and that the impor-
tance of the longer wavelength was less than the importance of shorter
wavelengths., This justified the use of 2/b = 2 as the first mode for
most comparisons.

In order to explore behavior comparable to a long plate which is
able %o pernmit &/b = 2, a run was made with two 2/b's symmetrically
arranged around &/b = 2 (see Figure 13). The limit cycle was about two-
thirds of that for &/b = 2, indicating greater stiffness for the off
modes. The mode associéted with the longer wavelength tended to dominate
the phenomena. The shorter wavelength mode was about 1C% of the limit
cycle amplitude. TFor equally unstable modes the system seems to prefer
the lower frequency mode. But more work must be done before any conclusions

can be reached.
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lost runs were made at p = .1. However one run was made at p = 1.,
and the results were essentially the same. The agreement of p = .1 and
u = 1. indicates that the same A/u relationship holds for the multi-mode

solution as did for the single mode solution.
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IX. COHCLUSIONM

The flutter of an infinitely long plate can be described analyti-
cally by assuming the deflections take the form of a traveling wave.
Limit cycles are a function of A/u and 2/b, with the greatest deflections
occurring at an &/b of 2. A single mode is usually satisfactory for
describing the motion. The effect of secondary modes is especially small

if the secondary modes are stable.
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